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RESPONSE ENVELOPE - A GLOBAL DESCRIPTION OF THREE-AXIS
LARGE~ANGLE SPACECRAFT ATTITUDE CONTROL SYSTEMS
By George Meyer

Ames Research Center

SUMMARY

Arbitrary three-axis, large-angle attitude control systems of highly
maneuverable spacecraft capable of tracking time-varying target attitudes are
considered. Such systems are inherently multivariable, multidimensional, non-
linear, and nonautonomous with infinite sets of forcing functions and initial
conditions. The concept of a response envelope is introduced. It provides an
analytical procedure for judging whether a proposed attitude control system of
this type is fast enough for the mission of the spacecraft. It is defined as
a scalar function of time which at each instant is the maximum possible three-
dimensional attitude error between spacecraft and target for any admissible
initial condition, time variation of target attitude, and disturbance. A sim-
ple procedure is presented for computing the response envelope approximately.
The approximation is conservative and may be used as a basis for accepting a
proposed system. The procedure is based on the Liapunov theory and a proto-
type of general attitude control systems. The proposed procedure is
illustrated by a numerical example based on an Orbiting Astronomical
Observatory.

INTRODUCTION

Systems for controlling spacecraft attitude vary greatly in their inter-
nal structure. Thus, for example, torque may be generated by reaction wheels,
control moment gyros, reaction jets, or by some interaction with the environ-
ment (i.e., gravity gradient, solar pressure, magnetic field, etc.). Simi-
larly, spacecraft attitude may be measured with star trackers, sun sensors,
inertial gyros, or by using the earth's magnetic field. Spacecraft angular
velocity may be measured directly, or it may be computed from attitude data.
Finally, the feedback linking the outputs of attitude and angular velocity
sensors with the inputs to the torquers may be designed using Euler angles,
some property of sensors (see refs. 1 and 2), or Euler's theorem on three-
dimensional rotations (see refs. 3 and 4). The design may be optimal in some
sense, or it may simply be intuitively appealing. However, despite this
diversity, every attitude control system is built for the single purpose of
allowing the spacecraft to fulfill its mission. Consequently, there is always
a stage in the design of such systems at which one must judge the quality of
the proposed system relative to the mission of the spacecraft. Since all pos-
sible situations must be considered, quality must be judged on the basis of
the overall (global) properties of the system. This poses no difficulty if
the mission of the spacecraft presents its control system with only a small



number of situations to control because then global behavior may be obtained
by directly testing the system or its analytical model. If, however, the num-
ber of situations to control is so large that direct enumeration is impracti-
cal, or, indeed, impossible, tests consisting of a small sample may not be
decisive: there is no certainty that every case which results in mission
failure is included in the test sample.

The present note is concerned with the responsiveness of three-axis,
large-angle attitude control systems of highly maneuverable spacecraft capable
of tracking time-varying target attitudes. A system of this type is inher-
ently multivariable, multidimensional, nonlinear, and nonautonomous with infi-
nite sets of forcing functions and initial conditions. Since, on the one hand,
there are infinitely many cases involved, and, on the other hand, there are no
typical cases (because of nonlinearity) from which to extrapolate to any other
case, the responsiveness of such systems cannot be determined by direct enu-
meration of cases. Another method must be found. The purpose of the present
report is to present such a method.

The method involves two ideas, namely, the error angle first introduced
in reference 4, and the response envelope introduced in the present note. The
error angle is a distance between three-dimensional rotations. The response
envelope is a function of time which at each instant is the maximum of all pos-
sible values of the error angle at that instant. The response envelope indi-
cates the responsiveness of the system in the following sense. Under no
possible circumstances is the attitude error between spacecraft and target, at
any instant, greater than the value of the response envelope at that instant.

The discussion proceeds from the general to the particular in three steps.
First, the response envelope is defined precisely. Second, a procedure for
computing a useful approximation of the response envelope is described. Third,
a numerical example is presented as an illustration of the method. One of the
control laws introduced in reference 4 is assumed for an Orbiting Astronomical
Observatory, and the following questions are considered: (1) What is the
responsiveness of the system to step changes in the target attitude, and how
well does the system follow time-varying target attitudes? (2) How signifi-
cant is gyroscopic coupling? How sensitive is the system to (3) external
torque disturbances, (4) variations in system parameters, (5) changes in the
form of the control law, and (6) time delays in the controller? Answers are
obtained by the proposed procedure.

SYMBOLS
Ay output matrix; actual attitude of spacecraft relative to inertial
space
Ags input matrix; desired attitude of spacecraft relative to inertial
space
a orthonormal triplet of vectors fixed to the spacecraft
2
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S(y)

n>

tr( )

uj (t)
V(t,x)
V+(t,x)

Vy(t,x)

unit eigenvector of R; error axis

orthonormal triplet of vectors fixed to the target
time derivative along a system trajectory

set of system state equations (i.e., x = f[x,u;(t),uy(t)])
right-hand side of system state equations

scalar functions appearing in equation (16)

angular momentum storage capacity of controlling device
unit matrix

spacecraft coordinates of moment of inertia of main body
maximum eigenvalue of VJa

minimum eigenvalue of J,

torque capacity of the controlling device

set of all motions of the system

perturbation function

error matrix defined by equation (2)

set of all real n-tuples

matrix function defined by equation (A2Z) in appendix A
orthonormal triplet of vectors fixed in inertial space
time

trace of matrix ( )

set of admissible time variations of u,

value of u, at t

solution of Hamilton-Jacoby equation

solution of Liapunov inequality

explicit part of V+(t,x)



Ea set of admissible time histories of spacecraft angular velocity
Wq body coordinates of inertial angular velocity of spacecraft
Womax spherical bound on w,

Wy target coordinates of inertial angular velocity of target
Wdmax spherical bound on wy

X state space of the system

X element of state space

z (x) control law given by equation (16)

8 region of operation of the system

M real constant

Z set of admissible time histories of spacecraft acceleration
o, angular acceleration of the spacecraft

Oamax spherical bound on o,

o error angle

¢(t,x,uy,up) point on a time history of error angle

o*F*(t) value of the response envelope at t

o (t) value of lower estimate (of the response envelope) at t
¢+(t) value of upper estimate (of the response envelope) at t
() time history (thus, x = {[x(t),t]: t > O})

() time derivative of ( )

( )t matrix transpose of ( )

DEFINITION OF THE RESPONSE ENVELOPE

Consider in general terms a complete attitude control system. It con-
sists of essentially three distinct parts: (1) an input generator, (2) a
spacecraft, and (3) a disturbance generator. The input generator represents
all admissible time variations of attitude to be followed by the spacecraft.
The spacecraft consists of the spacecraft inertia, torquers, sensors, and a
controller which sends commands to the torquers based on information supplied
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by the sensors. The disturbance generator represents all admissible time vari-
ations of undesirable but unavoidable disturbances acting on the spacecraft
such as perturbations in system parameters and external torque disturbances.
Thus, an attitude control system as defined in the present report is a com-
plete spacecraft and its environment. The mathematical model to be assumed
for such a system consists of the following items: (1) an n-dimensional
state space X; (2) a region of operation 6 in X to which the motion of
the system is restricted by physical limitations of system components; (3) two
sets U; and U, of forcing functions, where for i =1, 2, U. is a set of
piecewise continuous vector functions of time u with values u; (t) in
Uj(t); and (4) a set E of state equations describing the dynamics of input
generator, spacecraft, and output generator:

E = {(Xl = fi[x,ul(t),uz(t)], iy: i=1, .. ., n}

A motion of the system is a solution of E for some initial state x in 6,
some input attitude generated by a forcing function wu; in U;, and some dis-
turbance generated by a forcing function u, in U,. Thus, the sets E and

6 x U; x U, (Cartesian product) define the set M of all possible motions of
the system. The central topic of this report is the description of M. Those
aspects of M will be considered which reflect how well the spacecraft fol-
lows any admissible time variation of the desired attitude in the presence

of any possible disturbance.

To decide at any instant of time how near the actual attitude of the
spacecraft is to the desired attitude, it is necessary to have a notion of a
distance between three-dimensional rotations. This may be introduced as fol-
lows, Consider three right-handed orthonormal triplets of vectors, say, §, &,
and d. The attitude of a relative to S is given by the 3 x 3 orthogonal
matrix’ Ayg whose elements are the direction cosines of a relative to S.
Similarly, the attitude of d relative to s is given by Ags. The attitude
of a relative to d is given by the matrix AaSAES, where t denotes
matrix transpose. It follows (see ref. 5) from Euler's theorem on rotations
that A sAts may be interpreted as a rotation about a single axis which is
the eigénvector of AaSAt . The angle of this rotation (according to para-
graph 3 in appendix A) is the following function of Ayg and Agg:

¢ (A4s,Azg) = arc cos.{%-[tr (AasAgsJ - 1] } (1)
[0,m]

It is shown in appendix A that this function is a metric on the space of three-
dimensional rotations. Indeed, (i) ¢(Ags,Azs) > O0; (ii) ¢ (Ags,Aas) = O if

and only if Azs = Ads; (iii) ¢(Ads,Aas) = ¢(Aas,Ads); (iv) if B is any
three-dimensional rotation, then ¢(Agg,B) + ¢(B,Azs) > ¢(Ags,Ass). Conse-
quently, ¢(Ags,Ays) may be interpreted as representing the distance between a
and d. In fact, the following interpretations will be made in the remainder

of this report. In inertial space s is fixed. In the spacecraft 4 is
fixed; Azs 1is the actual attitude of the spacecraft, and is the output of the
attitude control system; Ajs defines the desired attitude, and is the input



to the system. The attitude error is the 3 x 3 orthogonal matrix R defined
by
t
R = AasAds (2)

~

It may be noted that R 1locates a relative to d. The magnitude of atti-
tude error is.the error angle ¢ = ¢(Agg,Agz5). The direction of attitude
error is the axis ¢ (unit eigenvector) of R computed from R using
equation (A5) in appendix A.

It can be shown (see appendix A) that ¢ has the following intuitively
appealing properties. (1) It is the shortest unrestricted angular distance
between the actual and the desired attitude. (2) It is no smaller than the
angle between the ith (i = 1, 2, 3) vector of the a-triplet and the ith
vector of the a—triplet. (3) In the one-dimensional case (i.e., shaft-
positioning servos) in which rotation about only a single axis is allowed, the
usual definition of error is ¢e = ¢4 - ¢4, where ¢4 and ¢5 are the input
and output angles, respectively. In that case ¢ = |¢g| if |¢e| < 7, and
¢ = 271 - |¢e| if 7 < ¢e| < 2m. (4) When ¢ 1is small, the attitude error
may be represented by the vector ¢c whose components are the Euler angles of
R, and whose magnitude ¢ is the square root of the sum of the squares of
these angles. For these reasons it appears that the error angle ¢ 1is both a
mathematically convenient and intuitively appealing scalar representation of
three-dimensional attitude error of a spacecraft at each instant of time.

The response envelope can now be defined in terms of time variation of
error angle. With each admissible motion of the system it is possible to asso-
ciate a time history ¢ of the error angle. For a given admissible initial
state, and forcing functions wu; and up, ¢ is a curve in the first quadrant
of the t-¢ plane. The ¢-coordinate of ¢ will be denoted by ¢(t,x,uj,uy).
Let @ be the set of all such curves generated by M. The response envelope,
to be denoted by ¢**, is defined to be the curve in the first quadrant of the
t-¢ plane such that every point ¢**(t) of ¢** is the maximum of all values
of ¢ in ¢ at time t. For this definition to make sense formally, it will
be assumed that for all t > 0, the set 6 x Uj(t) x Uy(t) is compact and that
flx,u; (t),us(t)] is uniformly bounded on this set. This assumption is suffi-
cient to guarantee the existence of the response envelope, and represents an
insignificant physical restriction. The value of the response envelope may be
computed for any t > O by the following formula.

¢**(t) = max [ max ¢ (t,x,u;,up) ] (3
xe 6 (u,up) e Uy x Uy

The following diagram summarizes the discussion of the present section.
The input and disturbance generators generate admissible time variations of
desired attitude Agg and disturbance d, respectively. Both act on the
spacecraft to generate the rotation Aag. For the complete system the follow-
ing relations hold: the state space X C X; x X, x X3, the region of
operation 6 C 0; x 8, x 63, and the state equations E C E; UEp; UE3. By



NPUT PACE- oisTuREance | €ANS of equation (1), the.dlstan?e between
GENERATOR CRAFT GENERATOR the desired and actual attitudes is computed

:a :a to obtain the curve ¢. The boundary of all
Xp X3
Ags Ep d Es
L= 12

such curves is the response envelope $**.
Thus, the response envelope is a global prop-

e

[

| erty of an attitude control system that
\ Ags describes the responsiveness of the space-
s — craft. Regardless of where in its region of
l LA —:—+sxgx%'—*°£" operation the system is initially and regard-

less of how the input attitude and distur-
Figure 1.- Attitude control system and its b?'n(,:e vary in t%me within th(.% prescrlbed
response envelope. limits, the attitude error will not at any
time be greater than the value of the
response envelope at that time.

APPROXIMATE COMPUTATION OF RESPONSE ENVELOPE

Consider, now, the problems involved in the computation of the response
envelope whose points are defined by equation (3). The usual functional maxi-
mization techniques yield in general only local maxima. In the absence of the
a priori knowledge of the number of these maxima, such methods will yield only
lower estimates ¢  of the response envelope ¢**, where ¢ (t) < ¢**(t) for
all t > 0. This is useful because an attitude control system may be judged
unacceptable on the basis of such an estimate: there are conditions for which
attitude error is at least as large as ¢ (t). In the+present section a
method is presented for computing an upper estimate ¢ such that
¢**(t) < ¢*(t) for all t > O. This is useful because an attitude control sys-
tem may be judged acceptable on the basis of such an estimate: wunder no cir-
cumstances can the attitude error be larger at time t than ¢*(t). The
discussion proceeds in three steps. First, a general approximation procedure
is set up using a state space interpretation of equation (3). Next, a proto-
type of arbitrary attitude control systems is formulated. Finally, the compu-
tation of an upper estimate of the prototype response envelope is stated
explicitly.

State Space Interpretation of the Response Envelope and a
General Procedure for Computing Its Upper Estimate

Let the multidimensional state space X and region of operation 6 be
represented schematically as shown in the following figure, and let one of the
state coordinates be the error angle ¢ (transforming the state space if nec-
essary). The motion of the system starting in a state x and forced by u;
and u, may be represented by a trajectory in 6, whose ¢-coordinate at each
instant is the value ¢(t,x,u;,uy) of the error angle at that instant. The
same initial state but a different pair of forcing functions results in a dif-
ferent trajectory. Consider the bundle of such trajectories all emanating
from the same initial state and generated by all admissible u; and u,. This
bundle defines a moving set of states which is reachable from the given state
at a given time. The crosshatched regions in figure 2 show schematically such

7



—_ a set at various times. The maximum projec-
tion ¢*(t,x) of this set on the ¢-axis
gives at each t the value of the bracketed
term in equation (3). For example, in fig-
ure 2, ¢*(t,,x) is the maximum projection of
¢ | the moving set at t = ty. Different ini-
7% N tial conditions generate different moving
W sets. Consider at each instant the union of
all such moving sets generated by all ini-
tial states in 6. This union defines a mov-
— — —-- == ing cloud of points shown schematically in
Figure 2.- Motion of the set reachable figure 3. Initially the cloud completely
from  x. fills the region of operation 6. As time
progresses it changes shape in response to
the forcing functions and the action of the
spacecraft control. The maximum projection
¢**(t) of this cloud on the ¢-axis at each
t 1s the value of the response envelope
defined by equation (3). In other words,
the knowledge of the motion of the boundary
of this cloud is sufficient for the
computation of the response envelope.

(15, x)

-5
'

L The motion of this boundary may be
Figure 3.- Motion of the cloud of states. described mathematically as follows. Let

the boundary be defined by V(t,x) = 0, with
V(t,x) < 0 inside the cloud and V(t,x) > 0 outside. Let
(dv/dt) [t,x,u; (t),u(t)] denote the time rate of change of V(t,x) along a tra-
jectory of the system. According to the preceding discussion, the boundary of
the cloud is characterized by two properties: (i) it is a part of the cloud,
that is, at each point x on the boundary there is a pair [u;(t),u,(t)] such
that (dv/dt)[t,x,u;(t),us(t)] = 0, and (ii) no trajectory can penetrate it out-
ward, i.e., at each point x on the boundary and every pair [u;(t),up(t)] in
Up(t) x Up(t), (dv/dt)[t,x,u;(t),up(t)] < 0. Therefore, V(t,x) satisfies the
following equation on the boundary

max 9 [t,x,up(8),uz(t)] = 0 4)

Up (t) x Up(t)

But, the time rate of change of V(t,x) along any trajectory is V. + in, and
x = f[x,u;(t),us(t)]. Hence, the preceding equation may be expressed as
follows

Ve + H(t,x,Vy) = 0 (5)

where

H(t,x,Vx) = max VX(t’X)f[X:ul(t)5u2(t)] (6)
Up(t) x Us(t)



It may be noted that equation (5) is formally a Hamilton-Jacobi equation. The
boundary of the cloud is the solution of equation (5) such that
{x: V(0,x) <0} = 0.

If a closed form solution of the Hamilton-Jacobi equation were generally
available, the problem of computing the response envelope would be solved,
because

p**(t) = max 0 (7)
{x: V{t,x) = 0}

Unfortunately, no general solution to Hamilton-Jacobi equation is currently
available. The best that can be done is to compute points on V(t,x) = 0 by
means of the canonical equations associated with equation (5). As already
noted this results in a lower estimate ¢ of the response envelope. Another
approach is, of course, to try to guess the form of solution of equation (5)

on the basis of insight in much the same way as one guesses Liapunov functions.
Since a guess will most likely not be a solution, it is necessary to decide
what is a meaningful approximation in the present context. From the practical
point of view, the next best thing to the exact response envelope is a pair
(¢67,6%) of lower and upper estimates such that for each t > 0,

67 (t) < ¢**(t) < ¢*(t). Since ¢~ may be computed by means of the canonical
equations, it seems reasonable to consider an approximate solution meaningful
if, when substituted in equation (7), it yields an upper estimate ¢*. A func-
tion V¥ (t,x) will be such an approximate solution if the surface V¥ (t,x) = 0
encloses the cloud for all t > 0, that is, if

(x: V(t,x) <0} S x: Vit,x) <0}

for all t > 0. However, the approximating surface need not be a part of the
cloud. Hence, V' (t,x) is a solution of the following Liapunov inequality

Ve + H(t,x,V}) <0 (8a)
with the boundary condition
{x: v'(0,x) <0} 2De (8b)
Inequality equation (8a) must hold for all t > 0 and all x in 6 such that
vi(t,x) = 0.
It is very easy to construct functions that solve equation (8). Simply

let V*(t,x) = Vi(t,x) - Vo(t), where V;(t,x) is such that for some a < =,

(x: V;(0,x) <a} 2o (9)




and where V,(t) is the solution of the following ordinary, first order,
scalar differential equation with initial condition Vo, (0) = a.

Vp = max [Vig + H(t,x,Vix)] (10)
{x e 0: Vy(t,x) = Vy(t)}

Then V+(t,x) so defined solves equations (8) as can be tested by direct sub-
stitution. The corresponding upper estimate may be computed by means of the
following natural modification of equation (7).

o (1) = max ® (11)
{x e 06: Vi(t,x) = Va(t)}

Thus, any function V;(t,x) that can satisfy the boundary condition (9) may
always be used to compute an upper estimate. Of course, the fidelity with
which ¢% represents ¢** depends directly on the choice of V;(t,x). A
poor choice will result in an overly pessimistic estimate of system
performance.

A Prototype of Arbitrary Attitude Control Systems

In order to construct a V;(t,x) for an arbitrary three-axis, large-angle
attitude control system, A, consider the model of such a system in somewhat
greater detail than shown in figure 1. Associate with every possible motion
of the system the following time histories: target attitude Ag4g, spacecraft
attitude A,g, target angular velocity wg, spacecraft angular velocity Wa,
and spacecraft angular acceleration og. In any practical situation, wq(t),
wy(t), and o,(t) will be uniformly bounded. That is, if g?(m) is defined as
the set of piecewise continuous vector functions of time, which are spheri-
cally bounded by a constant m, there is a triplet (Wgmax, Wamaxs Camax) Of

constants such that wg & CO(wWgpax), Wg € Wy © CO(wypax), and
oy € Eagg CO(0amax). This means that any admissible time history Ags of the
desired attitude (target) is a solution of the following kinematic equation

(see eq. (Al)).
Ags = S[wg(t)1Ags (12)

for some orthogonal Ags(0) and some wq € Co(wdmax). Similarly, any possible

time history A,s of spacecraft attitude is a solution of

Aye = S[w, (t)]A, (13)

for some orthogonal A,5(0) and some wy; e W;. According to equation (A8),
equation (2), and the above kinematic equations imply the following expression
of the time rate of change of system attitude error R.

10



R = S[wy(t) - Rwg(t)]R (14)

This kinematic equation of attitude error will be taken as part of the set E
of system state equations. Since R is always orthogonal, it could be repre-
sented using three independent coordinates. This, however, is unnecessary and
inconvenient at this stage. Instead, all nine elements of R will be con-
sidered as independent with the stipulation that every R(0) is orthogonal.
The term -Rwy(t) in equation (14) will be interpreted as the value at time t
of the forcing function wu; in figure 1. Consequently, U; = C°(wgpax) -

Because angular acceleration of the spacecraft is bounded, W, has more
structure than g?(wamax). In fact, any wy; is a solution of the dynamic
equation

wg = 0a(t) (15)

for some wy(0) < wagpax and some o in the set I of admissible angular

2a

accelerations. Consider any such o,. It is obviously possible to write

o, = 0° + 60, where o° is a specific function and &c = o, - ¢°. The inter-
& T 5 o

pretation to be assigned to o¢° is that it represents that part of the space-
craft acceleration which helps to reduce attitude error. The difference 6o
will be interpreted as a disturbance. According to the previous discussion
the magnitude of attitude error R may be represented by the error angle ¢,
and its direction may be represented by the unit eigenvector ¢ of R. Hence,
any part of angular acceleration o, that is antiparallel to ¢ may be con-
sidered helpful. Another helpful part of o, is one which is antiparallel to
the angular velocity w, of the spacecraft because it provides damping. For
these reasons o¢° will be defined as follows. For every possible motion of

the system ¢° = {(t,z[R(t), wa(t)]): t > 0}, where

z(R,wg) = -g1(¢)g2(iiwvglc - g3(dIwy (16)

and where g3, go, and g3 are scalar functions. The perturbation 60(t) will
be represented at every t > 0 by n[t,R(t),w (t)]uz(t), where u, € C (1),
and where the function n is chosen so that for every possible motion of the
system and every t > 0

6o (t) = 0a(t) - z[R(t),wa(t)] & {n[t,R(t),wy(t)Jua(t): tup(t)y < 1}
(17)
The perturbation function n may be a matrix, or simply a scalar. With such
a representation of spacecraft acceleration oy, the dynamic equation (15)
becomes the following:
V.Va = Z[R(t):wa] + n[t,R(t),Wa]UZ(t) (18)

11



This equation will be taken as the remaining part of the set E of system
state equations, and wg will be the remaining part of the state vector x,.
The coordinates of w, are restricted by the condition |wyll < Wamax. The
forcing function u, will be identified with the forcing function in the
disturbance generator as shown in figure 1. Hence U, = EP(I).

The preceding discussion motivates the prototype of attitude control
systems defined in the following table.

TABLE I.- PROTOTYPE.YC OF ARBITRARY ATTITUDE CONTROL SYSTEMS

X =R12 x = (R,wy)

6 = {x: RRY = I, iwall < Wapaxt C RO

= .
i}

S{w, + ui(t)]R

a

z(x) + n(t,xJuy(t)

.
1

Up = C°(Wgpax)» YUp = CO(1)

The underlying state space X 1is 12-dimensional; the state variable is
denoted mnemonically by x = (R,wg). The region of operation 6 is defined
by the orthogonality condition on the error matrix R and by the spherical
bound on the angular velocity w, of the spacecraft. Thus, 8 is
6-dimensional: three for R and three for wy. Clearly, 6 1is compact. The
set E of state equations consists of equations (14) and (18). The control
law z(x) is defined by equation (16). It and the perturbation function
n(t,x) are bounded on 6. The two forcing functions u; and u, belong to the
sets of piecewise continuous vector functions of time which are spherically
bounded by wgp.x and 1, respectively. The right-hand side of the state
equations is uniformly bounded on its compact domain.

In the following very specific sense MO is a prototype: 1t generates
all time histories ¢ of the error angle which are possible for any attitude
control system 4 having the bounds (wdmax, Wamax, Oamax) and the set 1, of
admissible accelerations for which inequality (17) holds. This inequality can
be satisfied for any .4, however complex, by a proper choice of n(t,x). Con-
sequently, the response envelope of.A4°[wdmax, Wamax» 2(x), n(t,x)] is neces-
sarily an upper estimate of the response envelope of
A= (Wdmax> Wamax, Samaxs Z,) for which (17) holds. If n(t,x) is large, the
estimate will be pessimistic.

12



Explicit Procedure for Computing an Upper Estimate
for the Prototype

A very simple V;(t,x) is now proposed for the computation of an upper
estimate of the response envelope of M° by means of equations (9), (10), and
(11). It is the following.

_ b (1 1 riwall?2 dy 1oy ¢
Vi(t,x) = % [g1(y) + ug3(Y)Sln(2 y)1dy + §'fo o) T H 51n(§-¢)c Wg

(19)

The functions gj;, go, and g3 appear in equation (16). The scalar u is an
adjustable constant. There is no explicit dependence on time. Hence, Vi = 0.
The Hamiltonian H(t,x,V;x) is given by equation (B2). A V;(t,x) of the form
of equation (19) may be thought of as a natural extension to three dimensions
of the Liapunov function useful for the analysis of one-dimensional servos.
Thus, the first integral on the right of equation (19) depends only on the mag-
nitude of attitude error. The second integral depends only on the magnitude
of angular velocity. The last term represents a coupling which depends upon
these magnitudes as well as on the angle between the error axis and the
velocity vector.

The proposed procedure for computing an upper estimate of the response
envelope of the prototype A4/° is now explicit. It is summarized in the
following table.

TABLE II.- COMPUTATION OF AN UPPER ESTIMATE

Step Obtain V; using (19)

Choose V,(0) to satisfy (9)

1
Step 2

Step 3. Solve (10) for V,(t)
4

Step Compute gf using (11)

The Hamiltonian H(t,x,Vix) needed in step 3 is derived in appendix B.

Several points regarding this procedure are worth noting. Since V;
defined by equation (19) depends only on the triplet [¢, |wal, sin(1/2 ¢)ctwa]
of scalars, the maximization in step 4 may be performed on a two-dimensional
surface in a three-dimensional space whose points are related to the states x
in 6 by the function p(x) = [¢, way, sin(1/2 ¢)ctwa].

The computation in step 3, in general, requires a maximization over a
five-dimensional surface in 6. If, however, the perturbation function n(t,x)
depends on x only through the triplet p(x), as above, then this
maximization can be performed on the same two-dimensional surface as in step 4.

13



Steps 3 and 4 can be performed simultaneously on a digital computer.
Experience has shown that the computation of an upper estimate in this manner

takes about one second of computer time.

Finally, it will be noted that the perturbation enters the computation
only by way of equation (Bl) needed in step 3. Consequently, when =z(x) and
n(t,x) are selected for any attitude control system w4, only that component of
acceleration o, need be considered in equation (17) which is in the plane of

Za
w, and c.
EXAMPLE

The following numerical example illustrates the computation and use of
upper estimates for the global description of attitude control systems. An
Orbiting Astronomical Observatory (OAO) is considered. Its parameters perti-
nent to the discussion are summarized in appendix D. The spacecraft is con-
trolled by means of three identical orthogonally placed motor-reaction-wheel
combinations. The torque capacity of each motor is 4pax, and the angular
momentum storage capacity of each wheel is hpax. The passive moment of iner-
tia (moment of inertia of the spacecraft with locked wheels minus the moment
of inertia of each wheel about its spin axis) is the matrix Jg. The maximum
eigenvalue of Jy; is jpmax. A momentum dumping scheme maintains the total
angular momentum of the system bounded by hgpax. The acceleration is bounded
by o0amax = %max/Jjmax, and the velocity is bounded by
Wamax = (hmax - hsmax)/Jmax. The torque commanded by the controller on the
basis of sensor data is Jgzz(x), where the control law z(x) is assumed to be:

z(x) = %'Oamax [sat(¢,¢s)c * 1 Wo ] (20)

amax

The function sat(¢,¢s) = ¢/¢s for error angle ¢ < ¢, and it saturates at
the value 1 for ¢ > ¢s5. The saturation angle ¢, is a dimensionless combina-

tion of the dynamic capacities of the spacecraft:

2
2hmax

¢s= 2

Imax*max
For the present example of the OAO, ¢, = 0.1 radian. The complete model of
the system is derived in appendix C. The system has three axes and is
12-dimensional. Three independent coordinates are needed for the spacecraft
attitude, three for the desired attitude, three for the spacecraft angular
velocity, and three for the total angular momentum of the system (spacecraft
and wheels).

The stability of this system has been investigated in reference 4. There
the system was shown to be asymptotically stable everywhere on its region of
operation. The plots in figures 2, 3, and 4 of reference 4 show a response of
the system to a particular initial condition. The questions being considered

14



(1Y

now are: (1) What is the responsiveness of the system to step changes in the
desired attitude, and how well does the system follow a desired time varying
attitude? (2) How significant is the gyroscopic coupling? How sensitive is
the system to (3) external torque disturbances, (4) variations in system param-
eters, (5) changes in the form of the control law, and (6) time delays in the
controller? These questions are resolved by means of upper estimates computed
on a digital computer using the procedure outlined in table II for various
appropriate instances of the perturbation function n(t,x).

Let the system be normalized as follows: time, t - t/wypsx, angular
velocity W - w:Wypax. Then, the control law (20) becomes the following.

2(x) = - i sat($,0s)c - 7wy (21)
s

This control law is a special case of (16): setting g; = sat(¢,d¢s),

g2 = 1/¢5, and g3 = 1/¢5 1in equation (16) cne obtains equation (21), above.
With these identifications and setting the adjustable parameter u = 1, the

V, function defined by equation (19) assumes the following completely explicit
form.

¢

2 1 2 L9t
sat(y,¢s)dy4-$g-(l - cos QJ + §'¢s liwgh = + sin 5 ¢

vi(t,x) = [*

o

Ya

The results of the computation are summarized below in the same order as the
questions posed above.

(1) Responsiveness of the nominal system. The assumptions for this case
are: the initial attitude of the spacecraft is arbitrary; the initial angular
velocity of the spacecraft is arbitrary except that it is spherically bounded
by Wgnaxs the initial step change in the desired attitude is arbitrary; the
desired attitude varies in time arbitrarily except that its angular velocity
is spherically bounded by wgpax; there are no disturbances, i.e., n(t,x) = 0.
The result is the family of curves in figure 4. The family parameter b 1is
the ratio wWgpax/Wamax ©Of the two velocity bounds. The curve b = 0 indi-
cates the responsiveness of the nominal system to step changes in the desired
attitude. Thus, for any possible initial condition, and
regardless of the size and direction of the step change of
the desired attitude, the attitude error will not be
greater at any time than indicated by this curve. In fact,
the system is not only globally asymptotically stable, but
also it is essentially (¢ < 0.01) on target no later than
5 units of time. Curves with b > 0 indicate how well the
nominal system follows the desired attitude when that is
varying in time. Thus, the curve b = 0.2, for example,
shows that for any possible initial condition, and regard-
less of how the desired attitude varies in time, so long
as its angular velocity remains spherically bounded by
Figure 4.- Nominal system.0.2 Wamax, the attitude error will not be greater than

that indicated by the curve. It is emphasized that a

¢ (rad) ——

Wmax
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curve in figure 4 is not a response of the system. Rather, it is a descrip-
tion of all (there are infinitely many) responses of the multivariable,
multidimensional, nonlinear, and nonautonomous system with infinite sets of
initial conditions and forcing functions.

(2) Significance of the gyroscopic coupling. It is assumed that initial
spacecraft attitude is arbitrary and its angular velocity is spherically
bounded by wgpax. The desired attitude is stationary after an arbitrary step
change. The system is preloaded with a total angular momentum which is spheri-
cally bounded by hgpax but is otherwise arbitrary. There are no net exter-
nal torques. The appropriate perturbation term is given by equation (C6).

The result is the family of curves in figure 5. The family parameter b is
the ratio hgpax/hpax ©0f the bound on the total angular
momentum to the momentum capacity of the reaction wheels.
The curve b = 0 corresponds to the case of no gyroscopic
coupling. The curve b = 0.3 indicates that for the case
of the OAO considered, gyroscopic coupling is not very
significant even when the system is loaded with as much
as 30 percent of its angular momentum storage capacity.

T
3

¢ (rad)—=
~n

(3) The effects of external torque disturbances.
The assumptions in this case are as in case (2) except
o that net external torque is allowed to be nonzero. The
Fi . . only restrictions are that this torque is spherically

gure 5.- Gyroscopic .

effects. bounded by fsmax, and that it does not overpower the
momentum dumping system which maintains the total angular
momentum bounded by hgpax. The appropriate perturbation
term is given by equation (C7). The result is the pair
of curves in figure 6. The lower curve is for
hemax = %smax = 0. The upper curve is for
hegpax = 0.3 hpax and 2gpgx = 0.1 &pgx- Thus, for any pos-
sible initial condition, attitude error will be less than
about 10° after 6 units of time despite external torques
which may be as large as 10 percent of the torque
capacity of the controller.

TWmox

vy

$lrad) —=
n

Winay ~= (4) Sensitivity to variations in system parameters.
Figure 6.- External torque UNtil now the spacecraft was assumed to be controlled
disturbances. exactly by the control law (20). That is, it was assumed
that the motor-reaction-wheel combinations were placed exactly on the orthogo-
nal body axes, that the error angle ¢, the error axis ¢, and the angular
velocity wy,; of the spacecraft were computed from sensor data without error,
and that the matrix Jz; was known exactly. Obviously, in practice, error
will be present because motor-reaction-wheels will be slightly off axis, sen-
sor characteristics will vary, signal and power amplifiers will drift, the com-
puter will have roundoff errors, and the moment of inertia of the spacecraft
will vary because of shifting mass caused by thermal distortion and movement
onboard of instruments and personnel. The purpose of the present subsection

is to investigate the effects of such errors.

Let the perturbation in the active parameters be denoted by the column
§p of appropriate dimension, and let the set of all possible &p be P
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which may be assumed to be infinite. The actual torque generated by the con-
troller is a function, say Jaz(x sp), of the state x and perturbation dp.
Then the effects of perturbation on the angular velocity of the spacecraft may
be described by the function m(x,8p) = J3 159 alz(x,0) - z(x,8p)], where J, is
exact moment of inertia of the system. For a fixed state x, let the set

M(x) = [m(x,8p) such that 6p e P] and let the set N(x) = [n(t,x)up(t) such
that |us(t)) < 1] where n(t,x) is chosen so that for t > 0 M(x)C N(x) for
all x in 6, the region of operation of the system. Clearly, regardless of
how &p varies in time, its effect on the angular acceleration may be
accounted for by the perturbatlon term n{t,x)up(t), where up e c® (1). The
significance of the perturbation in system parameters may now be estimated
with an upper estimate of the response envelope. Two examples of
perturbations are given next.

(1) Spherical perturbation in angular acceleration.
n(t,x) = bliz(x,0)il. The constant b is the intensity of
perturbation, and z(x,0) is the nominal control law z(x)
given by equation (20). The curves in figure 7 are upper
estimates for various intensities b. The plots indicate
that spherical errors in acceleration of the order of
10 percent affect the performance of the system little.
This means, for example, that 10 percent drift in moment
of inertia, motor and power amplifier gains, or a mis-
alinement of the motor-reaction-wheels of about 3° is not
very detrimental to the performance of the system. Even
when such errors are large enough to cause 30 percent
Figure 7. Spherical errors in accelerationf tbe system.remains globally asymp-
ervor in acceleration. totically stable, and it is essentially on target after
about 8 units of time for any possible initial condition.

(ii) Spherical error in the error axis. Suppose that
the difference between the true error axis ¢ and its com-
puted approximation c¢©® 1is spherically bounded by b,
that is, suppose that |c - c©y < b. Then the correspond-
ing n = bsat(¢,¢5)/¢s. Figure 8 shows the computed upper
estimates for several intensities b. The plots indicate
that the system is not very sensitive to errors in the
error axis. In fact, even when these errors are as large
as 40 percent, the system remains asymptotically stable
everywhere on its region of operation, and it is essen-
tially on target for any possible initial condition after
about 8 units of time.

Figure 8.- Spherical
error in error axis.

—

tWmax

(5) Sensitivity to changes in form of control law.

In the preceding subsection perturbations in angular acceleration were assumed
unavoidable and largely undesirable. Another point of view is possible. Sup-
pose that all system parameters are essentially fixed, but that it is desir-
able for reasons of simplicity of implementation to use a control law which is
different from that given by equation (20). 1In such a case an upper estimate
to the response envelope of the modified system may be computed as in the
preceding subsection if the given control law is considered a sum of

equation (20) and a perturbation. The next two examples illustrate this point.
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(i) A processor of signals from attitude sensors. Let the attitude of
the spacecraft be measured with some arbitrary combination of star trackers,
inertial gyros, sun sensors, etc. Let the outputs of all sensors be arranged
in a single column matrix y of an appropriate dimension, and let the com-
plete package of sensors be descrlbed by y = g(Ass,yY°) where Ays 1is the
attitude of the spacecraft and y°® is the set of inertial coordinates of the
sensor targets (i.e., guide stars, inertial directions, sun, etc.). Let vy,
Agg, and y be combined in a processor whose output is some given function
f(y,Ags,y®). Finally, suppose that this output is used instead of sat(¢,¢g)c
in equation (21); that is, suppose that the new control law is the following
modification of equation (21).

200 = - 5o [E0.Agy®) + w, |

Then the perturbation in z(x) is z(x) - z*(x) = [f - sat(¢,é5)c]/¢g. Con-
sequently, the upper estimates given in figure 8 describe this modified system
for constant Ayg and y°, and, of course, ¢g5 = 0.1. The intensity

flg(RAGs,Y9) ,Ags,Y°] - sat(s,é5)c

b= {R: 33% - I}” Sat(‘i’ ¢S)

Thus, one may conclude, for example, that if reaching the target in 8 units of
time is sufficiently fast for the mission of the spacecraft, any combination
of attitude sensors and processor with b < 0.4 may be considered acceptable.
Two possible reasons one might be interested in a case with b > 0 are (1) sim-
plification of the control law, and (2) determination of effects of failure of
part of the output of the sensor package.

(ii) Control with control moment gyros. Suppose that the spacecraft is
to be controlled not with reaction wheels but, rather, with a set of control
moment gyros. Let the active gimbal angles of all the gyros in the package be
arranged in a column y of an appropriate dimension, and let the spacecraft
coordinates of the total angular momentum of all gyros be denoted by h
Assuming that the total angular momentum of each gyro may be adequately approx—
imated by its spin momentum, we may express hg as a function of y. Let

= h(y), where h{y) is one-to-one on Y, and h(Y) is a solid sphere with
radius hpgx. Then the control torque is -h,y. Let the gyro gimbals be
driven through a processor so that y = -F(y)Jgzz(x); where F(y) describes the
processor, J; 1is the moment of inertia of the spacecraft, and z(x) is the
control law given by equation (21). Then the new control law is given by
z*(x,y) = JalhyF(y)Jaz(x), and the perturbation
z(x) - z¥(x,y) = [I - Jalh F(y)Jalz(x). Consequently, the upper estimates
given in figure 7 describe the spacecraft controlled with a set of control
moment gyros when ¢g = 0.1. The intensity is

b = mix IT - J3'hyF(y)Jql

18



Two possible reasons one may be interested in a case with b > 0 are
(1) simplification of the control law, and (2) determination of effects of
failure of a number of gyros in the package.

(6) Sensitivity to time delays. It is assumed that the angular velocity
of the spacecraft is not measured directly but, rather, that it is computed
from attitude data supplied by attitude sensors, and that this computation
yields the exact angular velocity delayed by A wunits of time. The resulting
control law is the following modification of equation (21).

2% (x,8) = - $-1;-[sat(¢,¢s)c £ (t - )]

The perturbation z(x) - z*(x,A) = [wy(t - A) - wy(t)]/¢5. But,

walt - 8) - wy(t) = [ 2 [x(t),A]dt

Consequently, the effects of small time delays are described by the curves in

figure 7, where the intensity b = A/¢g = 10 A. In particular, the curve

b = 0.1 describes the OAO with a real time delay of 3.33 seconds. An estimate

not restricted to small A may be computed using

n = (—éqmax z* (x,A)
s

¥s" g
CONCLUSTON

The purpose of an attitude control system is to force the spacecraft to
track a target attitude regardless of disturbances and initial conditions.
Therefore, there is always the problem of describing how responsive the pro-
posed system is to inputs, how unresponsive it is to disturbances, and how
quickly it overcomes the initial conditions. The present note proposes the
concept of response envelope as a solution to this problem. In addition,
methods for computing lower and upper estimates of the response envelope are
presented. These methods are useful because, although the response envelope
is theoretically simple, it is difficult to compute in practice. The lower
estimate is computed by means of the standard theory of functional maximiza-
tion. The upper estimate is computed by means of a Liapunov inequality and a
prototype of attitude control systems. A proposed attitude control system may
be judged unacceptable on the basis of a lower estimate. Conversely, it may
be judged acceptable on the basis of an upper estimate. The numerical example
presented in the note shows that the response envelope and its estimates are
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useful for describing the responsiveness of complex systems whose behavior
cannot be ascertained by a direct enumeration of cases.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, June 20, 1968
125-19-03-09-00-21
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APPENDIX A
SOME USEFUL PROPERTIES OF THREE-DIMENSIONAL ROTATIONS

(1) Let A be a 3 x 3 orthogonal matrix whose determinant is +1. It can
be interpreted as a rotation of an orthonormal triplet a relative to an
orthonormal triplet s. Then, if xg and Xxg are the coordinates of an
arbitrary vector X relative to the s and a triplet, respectively, x5 = Axg.

(2) Suppose that A is a function A(t) of a real variable <. Then it
can be shown (see ref. 4) that there is a column matrix u(t) such that

I = Slu(m]a (A1)

where for any 3 x 1 column matrix x, the skew symmetric matrix

0 X3 -X2
S{x) =] -x3 0 X3 (A2)
Xo -X) 0

If t 1is interpreted as time then u(t) gives the a-coordinates of the
angular velocity of a relative to 5.

(3) According to Euler's theorem on rotations, A may be interpreted as

the result of a rotation from identity about a fixed axis. Hence, A 1is the
solution of

S =S@A, A0 =1

at some 1T = ¢, and some constant c such that ctc = 1; ¢ will be referred
to as the angle of A, and the eigenvector ¢ as its axis. The solution is

A= e C 14 sin ¢S(c) + (1 - cos $)82(c) (A3)

The angle ¢ and the axis ¢ may be computed from the elements of A by the
following formulas:

) .
$(A) = arc cos {& [tr(A) - 1] (A4)
[0,7] & }
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aszs -aszp

cosec ¢ | agzj -aj3 (A5)

N ==

c(a) =

aio -as]

It may be noted that ¢(At) = ¢(A), c(At) = -¢(A), and, of course, Ac = c.
(4) Let ©; be the angle between the ith vector of a and the ith
vector of §. Then 64 < ¢(A). Indeed,

cos 63 = cos ¢(A) + [1 - cos ¢(A)]c%(A)

Hence, cos 65 > cos ¢(A).

(5) Consider all paths from I to A. Each satisfies the differential
equation

gé—= Sfu(t)]A

with A(0) = I, A(ty1) = A, and some function u. Then
¢ (A) s_le lu(t)ide

so that ¢(A) may be considered to be the minimum angular distance between the
a and the s triplet. This may be shown as follows. The Hamiltonian for

the minimization problem is

H = tr{PtS[u(t)]A} + pgoliult)

and

P, = 0

-
i

S{u(t)]P
Thus, A and P have the same transition matrix &(t). Hence,

H = 2ut(v)e(t)k + pgiu()l
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where k is constant. The direction of u(t) which minimizes H is

u(t) _ -29(t)k

3] Po

But this means that the direction of u(t) is fixed in the §—trip1et.
Therefore, u(t) is at each 1 the eigenvector of A(tr), and the conclusion
follows.

(6) For any three-dimensional rotations A and B,

¢ (ABY) < ¢(A) + ¢(B) (A6)

Suppose the contrary, and let ABt = C and B = Dt. Then it would be true that
$(C) > ¢(D) + ¢(CDt). That is, the angle of the composite rotation: from I
to D, followed by D to C 1is smaller than the angle of direct rotation
from I to C. This, according to the preceding section, is impossible.

(7) Consider the set of all three-dimensional rotations. For any A and
B in this set let the following function be defined

$(B,A) = ¢(ABY) (A7)

The function ¢(B,A) so defined is a metric on the space of three-dimensional
rotations. Indeed, (i) ¢(B,A) is positive; (ii) ¢(B,A) = 0 if and only if

A = B; (iii) ¢(A,B) = ¢(B,A); (iv) ¢(B,A) + ¢(A,C) > ¢(B,C). The triangle
inequality follows from the preceding section:

$(B,C) = ¢(CBY) = ¢(CAtABY) = o[CAT(BAT)T] < ¢(CAY) + ¢(BAL) = ¢(A,C) + ¢(B,A)

(8) Let A = A(t) and B = B(t), where 1 1is real. According to prop-
erty (1) u and v are such that A = S(u)A and B = S(v)B. Let C = ABY.  Then

¢ =ABt +ABt =S (u)ABt - ABtS(v) =S(u)C -CS(v) =S(u)C - CS(v)CEC = S(u)C - S(Cv)C

Hence

g—g = S(u - Cv)C (A8)

(9) Let A = e$S(c), and dA/dt = S(u)A. Then it follows (e.g.,
appendix B of ref. 4) that
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tu (A9)

&le
I
0

and
1

% [sin(% ¢)c} = —21— sin [5 ¢)Su)c + % cos (% ¢Ju (A10)

sin [% q)]c is the vector part of the quaternion of A.
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APPENDIX B
THE FORM OF THE HAMILTONIAN

The projection of state point velocity on the gradient Vix is VixX.
The Hamiltonian appearing in equation (10) is according to equation (6) the
maximum of Vixx over U;(t) x Up(t). For V; defined by equation (19),

. .ol 1 .l
Vixx = [g1(¢) + ug3(¢)Sln(§-¢)] g%'+ iEETWW;Wj‘é%-”WaHZ +u é%‘[51n(§‘¢)ctwa]

where the derivatives are evaluated along the trajectory. They may be
obtained as follows.

(1) According to equation (A9) and the kinematic equation in table I,

Q.-{Cu
e

= Ct[wa + ul(t)]

(ii) Since lw 2 = wawg,

d 2 _ t-
az’“waﬂ = 2WaWa

(iii) From equation (Al0), it follows that

é% [sin(%—¢)ctwa} w; é%—[sin(%—¢)c} + sin[%—¢)ct®a

= Wi %{sin[%— ¢)S[wy + up(t)]c + COS(% o) [wy + ul(t)]}

+ sin[%-¢)ctwa

But wy = o,(t). Hence,
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Wa

+ ——]t o (t) + [g (6) + ugs(9)sin(3 ¢)]ctw
g2 (lwgll) a ! 3 7] a

VixX = [u sin[%—¢)c

+ %—u cos(%—¢) wgll 2 + uf(t) [g1(¢)c + ug3(¢)sin(%'¢)c

+ %—u sin(%—¢)$(c)wa]

If o,(t) = z[R(t),wa(t)] + n[t,R(t),wya(t)]ur(t), and z(R,wy) is given by
equation (16),

. ! g, (¢) 1 1
Vixx = -u g1(¢)g2(nwa")51n(§'¢) '[g;fﬁ@;ﬁj" 5 H COS(§-¢)] I wall 2

+ uE(t)[g1(¢)c +u g3(¢)sin(%-¢)c + %—u cos(%—¢)wa + %—p sin[%—¢)$(c)wa]

t t Wa .l ]
= Bl
+ us(t)n (t,R,wy) [ A sm(2 ¢)c (B1)
The Hamiltonian in equation (10) is
H(t,x,Vix) = max lek (B2)

CO(deax) x C2(1)
where Vixx is given by (Bl), above.

For the particular control law (21) used in the example,

.1 (1 1 1 2
Vixx = - a;—sat(¢,¢s)51n(§-¢] - [1 - z—cos(§-¢]] hw
+ u%(t) [sat(¢,¢s)c + ;%-sin(%-¢]c + %—cos[%—¢)wa + %—sin(§-¢)8(c)wa]

+ ug(t)nt(t,R,wa) [¢swa + sin(%—¢)c}
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APPENDIX C
DETAILED MODEL OF SYSTEM USED IN THE EXAMPLE

The dynamic equation of a spacecraft controlled by means of an arbitrary
angular momentum exchange and storage device (i.e., reaction wheels, control
moment gyros) may be obtained as follows. The total angular momentum of the
system is the sum of the angular momentum stored in the main body and that
stored in the controlling device. Denote the inertial coordinates of the
total angular momentum by hg, the spacecraft coordinates of the portion
stored in the device by hS%, and the spacecraft coordinates of the moment of
inertia of the main body by J,. Then,

Ach, =J w, +h (C1)

Taking the time derivative, using equation (13), and rearranging terms, one
obtains the following equation.

Wy = Jzt(-h§) + JalS(wa)Agghg + JolAzshg - Joldaw, (c2)

Thus, the angular acceleration of the spacecraft is the sum of four terms.
The first will be interpreted as the control acceleration, and the control
torque 2; will be defined as follows.

- C
2 = —ha (Cs)

The second term will be interpreted as gyroscopic coupling. The third is
caused by external torque. The body coordinates of the external torque will
be denoted by 25; hence,

= A__h (c4)

The fourth term is present only when the moment of inertia of the main body
varies in time.

Any practical angular momentum exchange and storage device is limited in
both exchange rate and storage capacity. Thus, the torque of motors driving
reaction wheels is limited as is the speed of the wheels. Similarly, the
rates with which gyro gimbals can be driven are limited by available torque
capacity, and the geometry defining the arrangement of gyros in the package
imposes a limit on angular momentum storage. This fact will be accounted for
by the following limits: | zgu < 2max and uhgn < hpax. In addition, it will
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be assumed that angular momentum is dumped in such a way that 25l < femax
Ihgl < hsmax. Equation (C1) implies that Hhgl < hpax if

Iwgll < Wamax = (hpax - hsmax)/Jmax, where jpax is the maximum eigenvalue of
Ja-

Equations (2), (12), (14), (C2), (C3), and (C4) may now be combined as
follows:

TABLE III.- DETAILED MODEL OF THE SYSTEM

X = R2% | x = (Ags,R,wy,hg)

6 = {x: AdsAgs = I, RR" = I, Iwall < Wapmax, lhgl < hgpay} C R12
( Ags = Slwg(t)]Ags
R = S[wy - Rwg(t)]R
E =J S
w, = J3N(t)eg(t) + JZL(e) [S(wa)RAdShs * 2o (t) + Ja(t)wa]
| hg = ASGRELS (1) )

d o] c c o) e e o 1
wg € W CC (Wgpaxds g € L7 CC a0, 5 € LW CC (Rgp,y)s Iy e I CC7,

and EF x LE x J is such that any x(t) € 6 for all t > 0.

The underlying state space of this model is 24-dimensional. However, the
region of operation 6 1is 1l2-dimensional. Three dimensions are for target
attitude Ayg, three for attitude error R, three for angular velocity of the
spacecraft w,, and three are for the total angular momentum of the system hg.
The motion of the system is given exactly by this model for any admissible ini-
tial condition and time variations of target velocity, control torque, exter-
nal torque, and moment of inertia. It may be noted that in the absence of
external torque, the total angular momentum is a constant of the motion, and
the last state equation may be dropped. If, in addition, the total angular
momentum is zero, then the gyroscopic term is absent.

In the example given in the main text, J;l(t)ﬁg(t) is assumed to be of
the form z(R,wy) given by equation (16). Hence, the perturbation appearing
on the right-hand side of the inequality (17) is the following.

so(t) = J;1(t) [S(wa)RAdshs +28(t) + I (t)w, ] (€5)
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Consider just the gyroscopic term. It is, clearly, bounded by
(hsmax/jmax)“wa“' This bound could be used as the perturbation function n
in figure 4. The perturbation 6o(t) = n(t,x)u,(t) enters in the computation
of an upper estimate only by way of equation (Bl). Therefore only the compo-
nent of &o(t), which is in the plane of w, and c, is significant. For this
reason if the scalar n 1is replaced by the matrix N, defined as follows, a
finer estimate will be obtained.

[S(wa) + auwanl] (C6)

where a = (Jmax/Jjmin) - 1- This may be justified as follows. For any
(Ags,R,wg,hg) in o,

J31S(wa)RAgshg € {y: y = hgpaxJa'S(wy)A and WAl < 1}

But that set is included in

h
{ y: y = 'smax [S(wa)xl + anwankz} and Jxll £ 1 and i) <1 }
Jmax

This set, in turn, 1s included in
{y: y = N(wg)x and jx; < 1}

Thus, the perturbation N(wg)u,(t) generates all possible cases of the
gyroscopic term.

The effects of external torque as well as the gyroscopic coupling can be
represented by the following perturbation.

§o(t) = N{wg)up (t) + ;emax

us(t) (€7)

min

where both wu; and uz belong to c®).
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APPENDIX D

PARAMETERS OF THE SYSTEM USED IN THE EXAMPLE

maximum principal moment of inertia Jpax =
minimum principal moment of inertia Jpin =
angular momentum storage capacity hmax =
maximum torque capacity max =
2
Zhpax
¢g = ——— = 0.1
Jmax®max

imax = Imi
- Jmax Jmin - 0.4

Imin

h
o = 22X _ 3 milliradians/sec

w q
max Jmax

1.4x103 kg-m?
1.0x103 kg-m?
4.2 N-m-sec

0.25 N-m
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